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Abstract. An exact solution of a 2 X n generalisation (two states for horizontal arrows and 
m states for vertical arrows with total arrow number conservation) of the six-vertex model 
is given using the commuting transfer matrix method. In the symmetric case, the free 
energy is a sum of n - 1 terms each of which is the free energy of a six-vertex model such 
that the phase transition into the frozen ferroelectric state of the 2 x n model is identical 
to that in the zero-field six-vertex model. For the six-vertex model we extend the commuting 
transfer matrix solution to the case of arbitrary vertex weights and provide a derivation of 
the Baxter parametrisation. 

1. Introduction 

Statistical mechanical models with bonds having more than two states have been 
studied extensively in the last few years (Stroganov 1979, Schultz 1981, 1983). In 
particular, Onody and Karowsky (1983) have considered a (arrow-reflection) sym- 
metric ten-vertex model which they solve exactly using the commuting transfer matrix 
method (Baxter 1982). In their model the horizontal bonds have two states while the 
vertical bonds have three states. We present an explicit solution of a generalisation 
of the model with an arbitrary number of states for vertical bonds (and two for 
horizontal bonds) and have included horizontal and vertical electric fields. We find 
that the phase transitions in this model in the absence of fields are the same as those 
in the six-vertex model. 

In the rest of this section we define the model that is studied in this paper and 
introduce the commuting transfer matrix method. In 9 2 the commuting transfer matrix 
(CTM) method for the six-vertex model is generalised slightly to include the vertical 
field directly. We also present a derivation of the Baxter parametrisation for the vertex 
weights. In § 3 we solve the symmetric 2 x n state model and obtain its free energy. 
Using the method of § 2 we include horizontal and vertical fields. Note that this is 
not the most general model for n > 2. The free energy has not been derived explicitly 
in this case. A few concluding remarks can be found in the last section. 

Consider a square lattice of N rows and M columns on a torus. The configurations 
of the system are specified by the states of the bonds: the horizontal bonds have two 
states represented by an arrow pointing to the left or to the right; the vertical bonds 
have n states represented by n - 2j + 1 arrows with j = 1,2, . . . , n (if n - 2j  + 1 is positive 
the arrows point upward, if negative the arrows point downward). A vertex corresponds 
to the specification of the four bonds that meet at a lattice site. The allowed vertices 
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are defined by the ‘ice condition’: the number of incoming arrows equals the number 
of outgoing arrows. Of a total of 4n2 vertices this restriction allows 4n - 2  vertices. 
For n = 2 this reduces to the six-vertex model (Lieb and Wu 1972). With each vertex 
is associated a statistical weight w,  = exp( -PE,)  where E ,  is the energy of the rth vertex 
configuration and P = l /kBT. 

The partition function Z is defined by 
M N  

z=c  n n wv,,,,, 
C i = l  j = 1  

where yi,j) is the vertex configuration at site ( i , j )  and the sum is over all configurations 
C of the lattice. As usual, 2 can be written as 

Z = T r  T N  (1.2) 

where T is the row-to-row transfer matrix. Following Baxter we write (see e.g., 
Jayaprakash and Sinha 1982 (to be referred to as JS) for details) 

T = Tr, = A+ D 
and 

(1.4) 

The fact that in p space 3 is a 2 x 2  matrix is a consequence of allowing only two 
states for the horizontal bond which makes this problem a straightforward generalisa- 
tion of the six-vertex case. The 2, are defined by 

where 
Gj = I O I O . .  . O I @ a ; @ I @ . .  .@I  

(1.5a) 

(1.56) 

etc, with 6 in the j th  place, I is an n x n identity matrix and or*, p^, 7 and s^ are n x n 
matrices which give the weights to go from the n states of the vertical arrow in the 
kth row to those of the (k  + 1)st row at a vertex. The specific model we solve is defined 
in figure 1 and in 0 3 .  We also define, 2, for notational convenience, by 

The free energy per site is given by 

1 -Pf= lim -1n A 
M-oo M 

( 1 . 5 ~ )  

where A is the largest eigenvalue of T. This is calculated using the commuting transfer 
matrix method of Baxter. This remarkable method involves finding a suitable 
reparametrisation of the vertex weights U,( U )  such that 

(1.7) 
A sufficient condition for this is the existence of a non-trivial, invertible, numerical 
matrix 9 such that 

(1.8) 

[ T( U), T( U’)] = 0. 

9 (U, u’),re( U )  0 2( U’) = LE( U’) 0 ,re( U)% (U, U’) 
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where 2( U )  and 2( U ‘ )  are 2 x 2 matrices in p space and pf  space respectively and 24 
is a 4 ~4 matrix in the direct product space. Equation (1.8) implies 

9( U, U’)?( U ) @  ?( U ‘ )  = Y( U ’ ) @  ?( U ) % (  U, U ’ ) .  (1.9) 

For a specific choice of 24 that obeys (1.8), (1.9) leads to commutation relations between 
the operators A, B, C and D in (1.4). These will be used to determine the eigenvalues 
and eigenvectors of T = A + D. 

The most general form of the matrix 24 needed in this paper is given by 

: a  0 0 01 
O b e O  

% = l o  f c 01. 
(1.10) 

10 0 0 d ’  

Note that 9 is determined up to a scale factor which is fixed by an appropriate 
normalisation, usually a = 1. Then (1.9) gives the ‘commutation relations’ between 
A( U )  . . . D( U )  and A( U ’ )  . . . D( U‘?. Here we record only the ones used for the construc- 
tion of eigenvectors and eigenvalues of T ( u ) .  These are 

[A(u) ,  A(u’) l=[B(v) ,  B(u’) l=[C(u),  C ( v ’ ) I = [ D ( u ) ,  O(v’)I= 0 

(1.11) 

In writing (1.11) we have assumed a = d  = 1. If a # d ,  then [ B ( u ) ,  B ( u ) ] # O ,  and the 
method used here (see JS) for the construction of the eigenvectors of T ( v )  fails. We 
also need the relation 

(1.12) 

which in fact follows from 

2 4 ( u , U ) = 2 4 - 1 ( U , u ) *  (1.13) 

Interchanging, U and U ’  in (1.8) leads to (1.13). All of these relations can be verified 
using the explicit form of 24 given in the later sections. 

The eigenvectors of T are constructed from a suitable ‘vacuum state’ 10) using the 
‘creation operators’ B(u). Application of B ( q ) .  . . B ( u , )  on 10) leads to both ‘wanted’ 
and ‘unwanted’ terms. Setting these ‘unwanted’ terms equal to zero gives nonlinear 
equations involving U,. These equations are identical to those obtained from the periodic 
boundary conditions in the original form of the Bethe ansatz method, and the solution 
of these equations gives the allowed values of U,. 

2. The unrestricted six-vertex model 

The six-vertex model in the absence of the vertical field has been solved by the CTM 

method (see JS for details). This, however, is not a restriction since the free energy 
in the presence of the vertical field can be obtained by performing a Legendre 
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transformation on the free energy in the absence of the field. In this section we include 
the vertical field directly in the CTM solution. The same method works for the 2 x n 
model discussed in 0 3. (This also yields the most general commuting transfer matrices 
for the six-vertex model). As a useful aside we provide a derivation of the Baxter 
parametrisation of the vertex weights. More precisely, we show the need for the 
parametrisation in the solution of an integral equation required to calculate the free 
energy in the thermodynamic limit. 

Using standard notation (JS and references cited therein), 9 defined in equation 
( 1 . 5 ~ )  is given byt 

We can choose w5 = f.06 without any loss of generality since we have imposec. periodic 
boundary conditions. However, in models with staggered fields this conditic n cannot 
be satisfied and hence we leave the discussion general. 9 is chosen to have the form 
given in (1.10). Observe that in contrast to JS we have allowed for e #f: This general 
form has also been considered by Sogo et a1 (1982) .  As we show below this permits 
the inclusion of vertical fields. 

Writing out the 16 matrix equations implied by (1.8) leads to various conditions. 
We use these to solve for ratios among a , .  . . ,f, in terms of the wi  and U : .  We exhibit 
below these relations for completeness: 

where 

e x2 

f-x1 

( 2 . 2 a )  

( 2 . 2 b )  

( 2 . 2 c )  

( 2 . 2 d )  

( 2 . 2 e )  

( 2 . 2 h )  

7 Here we follow the usual conventions for the six-vertex model. This differs from the convention used in 
§ 3 for the general 2 x n state model, where the vertices w j  and w4 would be interchanged. 
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The consistency of this set of equations leads to : 

Theorem. Two transfer matrices T ( o )  and T ( o ’ )  with vertex weights wi and w i  
commute, i.e., 

[no), T(w’)l= 0 (2.3a) 

if the vertex weights satisfy the following conditions: 

w1w2+w3w4-w5w6 = - A = constant 
2 ( w 1 w 2 w 3 0 4 ) ” 2  

(2.3b) 

(z) =constant. ( 2 . 3 ~ )  

It is customary to ‘parametrise’ the vertex weights w ,  by a variable U, i.e., o = U (  U )  
and w ‘ =  o( U’), such that the transfer matrices commute for arbitrary values of U. The 
condition for this is that the left-hand sides of (2.3b) and ( 2 . 3 ~ )  be independent of 
U. A general solution which achieves this (for w 5  = w6) is given by 

(2.4) 

where p l  p 2  = p 3 p 4  = p2 and +( U) and 4(  U )  are arbitrary differentiable functions of U. 
Thus the vertex weights can be expressed in terms of the variable U and constants, A, 
p, E, and Ey The last two are defined by? 

U104 P I P 4  exp(2PE,) = - = - 
@ 2 @ 3  p2p3 

and 

w I w 3  

w2w4 p2p4 
exp(2PE,) = - = 

( 2 . 5 ~ )  

(2.5b) 

One has the freedom to change the overall normalisation of the weights and thus only 
the ratio ~ ( u )  = t ) ( v ) / 4 ( u )  is independent. Thus the 92 matrix can be determined up 
to an overall multiplicative factor using (2.2) and (2.4): 

a = d  ( 2 . 6 ~ )  

b = c  (2.6b) 

e l f  = P2P4lP1  P ,  ( 2 . 5 ~ )  

(2.6d) 

(2.6e) 

where 4 = 4( v ) ,  4’ = 4( U‘), etc. 

t These equations differ by a factor of 2 from (2.11) in JS since we have taken each arrow to represent half 
a unit of polarisation in this paper. 
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The commutation relation (2.3a) can be written using the notation T ( o )  = 
T ( p ,  A, E,, Ep U )  = T (  U )  as [ T (  U), T (  U’)] = 0. Then as has been described in detail in 
JS, the eigenstates of T can be constructed and the largest eigenvalue determined. The 
vacuum 10) is taken to be e ,  0 e ,  0. . .0 e ,  where e ,  = (A) and the eigenvectors are 

Ivl, ~ 2 , .  . . ,  B ( v l ) B ( v , )  . . . B(un)lO) ( 2 . 7 ~ )  

i.e., 

T ( v , ,  v 2 , .  . ., v , ) = A ‘ “ ’ ( v ;  U,.. . u, ) /vI ,  u 2 , . .  ., U,) (2.7b) 

where 

A‘,)(  U ;  vl . . . v , )  = ( p , $ (  v )  

and the vj are determined by 

In the limit M + m  and N + m  keeping n / M  fixed, the vj become dense and form a 
continuous distribution. This distribution p (  U )  satisfies an integral equation (obtained 
by taking the logarithm of (2.9) and taking the thermodynamic limit) with a kernel 
given by (for the case E, = Ey = 0 )  

where 

(2.1 Ob) 

(Recall that x ( u )  = i,b( u ) / + ( v ) ) .  The Baxter parametrisation is obtained by requiring 
that K (  U, U‘) be a diflerence kernel, i.e., a function of U - U‘ only: 

For U = U’, this yields 

( 1  + x 2  - 2Ax( U ) ) .  
ax iK(0) -+- 
av  2A 
_-  

(2.11) 

(2.12) 

Letting A = cos 217 (7 may be complex) this equation is easily integrated to yield 

In X-exp(2i17) = -K(0 ) ( t an2~) (v -vo)  x - exp( -2i17) 
(2.13) 

which is unique up to a rescaling ( K ( 0 ) )  and the choice of origin ( v o )  for v. The form 
used by Lieb and Wu (1972) 

(2.14) 

can be obtained from (2.13) if we trade parameters (a, p )  for (U, 7) by defining the 
right-hand side of (2.13) to be a + ip. 
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Taking /1. = 277 and CY = -2iv leads to 

x( U )  = sin( v + T)/sin( U - 7) 

which is in fact Baxter's parametrisationt. 

3001 

(2.15) 

3. The 2 x n state model 

We consider the model with two states for horizontal bonds and n states for the vertical 
bonds represented by n - 2j + 1 arrows with j = 1, . . . , n. The vertices allowed by the 
'ice condition' and their weights are shown in figure 1. With appropriate labelling of 

I I i 1 
$ $n-7 v n-3 

I 

v1 v2 vn.  2 vn - 1 

Figure 1. The vertices of the 2 x n state model and their weights are shown here. In  the 
odd-indexed w vertices both horizontal arrows point to the right; by the ice condition the 
number of vertical arrows going in must equal the number going out. The vertices are then 
ordered by beginning with the maximum possible number, n - 1, of arrows going upward 
and reducing the number by two until all n - 1 arrows point down. The corresponding 
even indexed vertices are obtained by reversing all the arrows as shown. In the A vertices 
the horizontal arrows both point in; by the ice condition two more vertical arrows go out 
than come in. They are ordered in a similar fashion to the w vertices. The Y, vertex is 
obtained by reversing all the arrows of the An-, vertex. 

t One can obtain our other parametrisation easily from (2.4) replacing the last equation by w 5 w 6  = p 2 h 2 (  U). 
Thus, w5w6 = 1 can be imposed by normalising (2.4). In the case w 5  # w6, we have b # e, but the construction 
of eigenvectors etc works with trivial modifications. 
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the indices as shown in figure 1 the matrices G, p^, and s* in ( 1 . 5 ~ )  are given by 

( 3 . 1 ~ )  

0 
0 V,-I O I  

(3.lb) 

( 3 . 1 ~ )  

(3 . ld)  

For simplicity, we begin with the symmetric model (invariant under reversal of all 
arrows). In this case we have w 2 , - ,  = w Z 1  = U ,  and AI = U,-]. In addition, we impose 
the condition A, = U]. 

Since we are considering the zero-field model we choose a = d, b = c, and e = f in 
the 9 matrix i? (1.10). Then (1 .8)  leads to the following requirements (note that the 
choice p^( v )  = /I( v ' )  is necessary and is used in the following): 

aw: = bw, + ew:,,  

aw,,, = bw:,, + eo, 

for i = 1 , 2 , .  . . , n - 1 and 

b ( w j w ,  - w l w I , )  = eA,v, 

b(wjw, - ,+ ,  - W ~ W L ] + ~ )  = e(Ajv, - Aj-, v j - l )  

( 3 . 2 ~ )  

(3.2b) 

(3.3) 
b ( w L w , - w , w ; )  = -eA,-lv,-l 

'We have not analysed these equations in complete generality as in the case of (2.2). 
For n = 3, consistency requires 

-- - constant = 2 cos 277 w 1 + w 3  

U2 
(3.4a) 

(3.46) 

(the parametrisation of Onody and Karowski (1983) satisfies these although they do 
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not give (3.4a) explicitly). The equations (3.2) imply 

(U, + W , + ~ ) / W , + ~  =constant (3.5) 

for i = 1,2, . . . , n - 2. Guided by the known solutions for n = 2 and  3, we find that the 
following parametrisation satisfies (3.2) and  (3.3): 

(3.6) uJ = p sin[ U + ( n - 2j  + 1 77 3 j = 1, . . . , n. 
The A and  v are parametrised for n = 2m + 1 as 

1 - 1  

A ?  = vf = p 2  sin 277 C sin 4( m - j ) ~  i =  1 , .  . . , m (3.7a) 
J = o  

and for n = 2m as 
1 - 1  

~f = vf = p 2  sin 277 2 sin(4m - 4 j  - 2)77 i =  1 , .  . . , m (3.76) 
/ = 0  

(the others are given by A,  = A n - , ) .  

of the matrix 9 are given by 
For the 2 x n  state symmetric model, T ( u )  and T ( u ' )  commute and the elements 

(3.8a) 

(3.86) 

Note that the parametrisation in (3.6)-(3.7) reduces to that of Baxter for n = 2 ,  and 
essentially to that of Onody and  Karowsky for n = 3. More significantly, for all n-state 
models, the 3 matrix is identical. 

The inclusion of horizontal and vertical electric fields is straightforward. Unlike 
the six-vertex case, this is not the most general (4n -2) state model that can be 
cpnsidered. The horizontal field E, does not affect A ,  and v,; the elements of 6 and 
6 are altered as follows: 

a l e  = s i n ( 2 ~  + U - u')/sin( U - U') 

b l e  = sin 27/sin( U - U'), 

(3.9a) 

(3.96) 

Thus we have the parametrisation: 

w , ,_ ,=ps in [u+(n -2 i+1)77]  (3.10a) 

w2, = q sin[u+ ( n  - 2 i +  1)77] (3.106) i =  1 , .  . . , n 

where 

p l q  = exp(2PEX) (3.11) 

and {Al} ,  {v,} are given by (3.7a) or (3.76) with p 2 = p q .  In fact we can take 

P = P exp(PE,) and 4 = P exp(-P&) (3.12) 

and 9 remains unchanged. 
The inclusion of a vertical field E) is physically simple. Using periodic boundary 

conditions in the horizontal direction it is easy to show that the vertical polarisation 
P,, (f (number of up  arrows - number of down arrows)), is conserved by the row-to-row 
transfer matrix and  hence E, contributes additively to the free energy. However, it is 
easy to include E, directly within the commuting transfer matrix method by choosing 
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e # f i n  92. It can be verified that, by replacing e by [exp(-PE,)]e a n d f b y  [exp(PE,)lf 
in the zero-field result all the consistency conditions are satisfied for appropriate 
parametrisation of the vertex weights. This leads to the parametrisation including the 
fields: 

w * , - ~  = p exp{P[Ex + f ( n  -2 i+  l)Ey]} sin[u + ( n  - 2 i +  1)7]  ( 3 . 1 3 ~ )  

w 2 , = p  exp{-P[E,+f(n-2i+1)E,]}sin[u+(n-2i+l)q] (3.13b) 

for i = 1,2 , .  . . , n, and 

A f  = vf = exp[fP(n -2i)E,l(Af)o ( 3 . 1 3 ~ )  

is the zero-field expression given by ( 3 . 7 ~ )  and (3.7b). The corresponding where 
9 matrix is given by: 

a = d = l  

sin 277 
sin(27 + U - U’) b( U, U‘) = c(  U, U’) = 

The construction of eigenvalues and eigenvectors of T proceeds 
vacuum state oan be taken to be 

IO )=  e , O e , O . .  . @ e , ,  

where 

el=[] 

is a n X 1 column vector. The eigenvectors are then given by 

I u ~ , u ~ , . . . ,  u m ) = B ( U l ) . . . B ( u m ) l O )  

with eigenvalues 

where 

a( U )  = p exp[PE,(n - 11/21 sin[u + ( n  - 1)7]  

6 ( u )  = q  exp[PE,(n - 1 ) / 2 ] s i n [ u - ( n - l ) ~ ]  

and the uj are determined by the following transcendental equations: 

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

as usual. The 

(3.15) 

(3.16) 

(3.17) 

( 3 . 1 8 ~ )  

(3.18 b) 

(3.19) 

Note that the vertical field factors out in the eigenvalues given by equation (3.17) and 
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is absent in equation (3.19). Thus, as expected from the earlier discussion, the vertical 
field gives a trivial additive contribution to the free energy. 

We proceed to derive results for the free energy in the symmetric case. One can 
now take the thermodynamic limit (.Baxter 1982), and make the usual change of 
variables. We briefly describe some of the intermediate steps. The distribution of U, 
can be replaced by a distribution of K denoted by R , ( K ) .  This obeys the integral 
equation 

(3.20) 

where 

/i = 2( n - 1)7) + 7T ~ = - 2 i v - i 7 ~  and p=277+7~.  (3.21) 

Assuming that the maximum value of A'"'' occurs for m = !nM, i.e., there are as many 
down arrows as up, we get Q = E. In the case Q =E, (3.20) can, as usual, be solved 
by Fourier transforms yielding 

sinh( T - / i)x 
2 sinh( T - p ) x  cosh p x '  

R,(x) = (3.22) 

For n = 2 this reduces to the six-vertex expression 

R2( x )  = $ sech px. (3.23) 

The free energy per site f n (  7, U )  is given by (for the case where the first term in (3.17) 
is the larger) 

sinh(27-2u)x s inh2(n-l)Vx 
2 7  sinh TX cosh(27 + T ) X  

dx. f n (  77, U )  = - k B T  In w ,  + kBT (3.24) 

Using the identity 

n-1  

s i n h ( 2 ~  -2u)x sinh2(n - l ) ~ x = s i n h  277x sinh[27 -2(u+2k77 - n q ) ] x  (3.25) 
k = l  

we find 

(3.26) 

where f2 is the usual six-vertex model free energy. In (3.26) the constant parts are 
assumed to have been adjusted by choosing the normalisation factors appropriately. 
Apart from changes of variables, this provides an explicit derivation of the result 
Onody and Karowski (1983) gave. Recall that the phase transitions in the six-vertex 
model occur as one varies A = cos 277 where 77 is the first argument of f 2 .  Thus, all the 
( n  - 1) terms exhibit a singularity at the same point. Hence, in the zero-field case the 
nature of the phase transition is identical to that in the six-vertex model. Note that 
for all positive vertex weights, the condition (3.5) appears to preclude the antiferroelec- 
tric phase transition, i.e., at A = -1. However, general symmetry relations which might 
map unphysical regions of parameter space onto physical regions might exist and allow 
such transitions. 
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4. Concluding remarks 

We have presented an exact solution of a generalisation of the six-vertex model. We 
point out that the states of this model correspond to different spin representations of 
SU(2) with the six-vertex model corresponding to the fundamental representation. The 
operator B plays the role of the lowering operator J - .  This observation might provide 
an understanding of the fact that the 2 matrix (and hence, all the commutation 
relations) are identical in these models. The free energy in the absence of external 
fields is a sum of six-vertex free energies. Our solution also allows for an investigation 
of the free energy in the presence of fields. It is known that the six-vertex model in a 
field has a rich phase diagram. The analysis in the presence of fields is complicated 
and is deferred to a future publication. We also note for n 2 3  models the general 
solution to the compatibility conditions imposed by (1.8) which allow more freedom 
in the choice of vertex weights has not been explored. 
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